Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles.

نویسندگان

  • Lijue Chen
  • Xiaodong She
  • Tao Wang
  • Li He
  • Sarah Shigdar
  • Wei Duan
  • Lingxue Kong
چکیده

Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of mesoporous silica nanoparticles for drug delivery to cancer cells

Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...

متن کامل

Hollow Mesoporous Silica Nanoparticles (HMSNs) Synthesis and in vitro Evaluation of Cisplatin Delivery

Cisplatin continues to be a first line chemotherapy agent alone or in combination with other cytotoxic agents orradiotherapy. Dose-limiting side effects, intrinsic and acquired resistance are the main reasons for inventing and developing new ways of delivering cisplatin. Biocompatible hollow porous materials offer high void volume, shell porosity, low density and controllable size which make th...

متن کامل

The effect of mesoporous silica nanoparticles loaded with epirubicin on drug-resistant cancer cells

Objective (s): In chemotherapy for cancer treatment, the cell resistance to multiple anticancer drugs is the major clinical problem. In the present study, mesoporous silica nanoparticles (MSNs) were used as a carrier for epirubicin (EPI) in order to improve the cytotoxic efficacy of this drug against the P-glycoprotein (P-gp) overexpressing cell line. Materials and Methods: MSNs with phosphonat...

متن کامل

Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles.

In this work, hollow mesoporous silica nanoparticles (HMSNs) with three pore sizes were manufactured to control the drug release rate, and the biological roles of these HMSNs were evaluated in multidrug-resistant (MDR) cancer cells. As novel pore-size-controllable inorganic materials, HMSNs showed negligible cytotoxicity and efficient cellular uptake toward drug-sensitive MCF-7 and drug-resista...

متن کامل

Investigation of cytotoxicity properties of zinc oxide nanoparticles in spherical and rod shaped on leukemia cells

In this study, we reported a method to associate doxorubicin drug on folic acid functionalized SiO2/ZnO nanoparticles (NPs) in rod and spherical shapes. The clinical usage of the anticancer drug, doxorubicin (DOX), is limited by severe side effects and cell resistance. Targeted drug delivery by binding DOX to nanoparticles could overcome these limitations. The surface functionalization of the Z...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 33  شماره 

صفحات  -

تاریخ انتشار 2015